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The Importance of Being Variable
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New work suggests that blood oxygen level-dependent (BOLD) signal variability can be a much more powerful index of human age than
mean activation, and that older brains are actually less variable than younger brains. However, little is known of how BOLD variability and
task performance may relate. In the current study, we examined BOLD variability in relation to age, and reaction time speed and
consistency in healthy younger (20 -30 years) and older (56 - 85 years) adults on three cognitive tasks (perceptual matching, attentional
cueing, and delayed match-to-sample). Results indicated that younger, faster, and more consistent performers exhibited significantly
higher brain variability across tasks, and showed greater variability-based regional differentiation compared with older, poorer-
performing adults. Also, when we compared brain variability- and typical mean-based effects, the respective spatial patterns were
essentially orthogonal across brain measures, and any regions that did overlap were largely opposite in directionality of effect. These
findings help establish the functional basis of BOLD variability, and further support the statistical and spatial differentiation between
BOLD variability and BOLD mean. We thus argue that the precise nature of relations between aging, cognition, and brain function is
underappreciated by using mean-based brain measures exclusively.

Introduction
Typical functional magnetic resonance imaging (fMRI) “activa-
tion” patterns result from analyses of averaged signals within
voxel, within person. Although this approach has yielded great
strides since the inception of fMRI, it remains that the brain’s
natural state is variable (Faisal et al., 2008; Raichle, 2010). Much
work exists on the presence of variability and noise in the brain
(Biswal et al., 1995; Stein et al., 2005; Faisal et al., 2008), but
relatively few studies have considered brain variability as an indi-
vidual differences measure of interest. Recent work indicates that
blood oxygen level-dependent (BOLD) variability-based brain
patterns are highly powerful indicators of age (Garrett et al.,
2010a; Samanez-Larkin et al., 2010), nearly eliminate any useful
age-predictive variance offered by the mean signal, and are virtu-
ally uncorrelated with age-related mean-based patterns (Garrett
et al.,, 2010a). These findings suggest the presence of an effective
variance-based “signal” within what many consider to be unde-
sirable “noise” in fMRI.

Interestingly, few studies have examined the functional corre-
lates of brain variability. Does it help or hinder us from respond-
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ing faster or more consistently? Available studies suggest there are
certain functional benefits [more accurate and less variable cog-
nitive performance (Mclntosh et al., 2008)] and detriments
[poorer financial decision making (Samanez-Larkin et al., 2010)]
of greater brain variability, depending on measure, population,
and brain region. In the context of aging, much evidence sup-
ports the idea that older age yields various neural processing
inefficiencies, which may manifest from degraded structural,
functional, neuromodulatory, or genetic sources (Li et al., 2001;
MacDonald et al., 2009). Importantly, these forms of neural in-
efficiency are argued not only to yield age-related slowing, but
also age-related increases in response variability across a host of
different cognitive tasks and samples (MacDonald et al., 2006a,
2009). Notably, although unexamined, one possible basis for typ-
ical age-related neural processing deficits and concomitant per-
formance decrements is a critical lack of brain/variability. Our
recent work suggests that at fixation, older brains are generally
less variable than younger brains in a broad subset of regions
(Garrett et al., 2010a). This reduced variability could reflect
weakened functional connectivity (Fox et al., 2006; Nir et al.,
2008), poorer neuronal signal detection (Li et al., 2006), reduced
dynamic range (Shew et al., 2009), or a limited ability to explore
different network states (McIntosh et al., 2010). In any case, it
remains unknown how BOLD variability and performance (i.e.,
response variability and speed) are related across different cogni-
tive tasks with older age. Should age-related reductions (Garrett
etal.,2010a) in brain variability also yield poorer performance on
cognitive tasks spanning various domains, such results may re-
veal a novel and complementary source of age-related processing
inefficiencies.

In the present study, we examined relations between brain
signal variability and both chronological age and cognitive per-
formance [mean reaction time (RT) and response variability] in
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young and older adults. Based on our previous work (McIntosh
etal., 2008; Garrett et al., 2010a), we anticipated that greater brain
variability would be associated with younger age and better per-
formance overall, and that variability- and mean-based brain pat-
terns would prove largely nonoverlapping.

Materials and Methods

Sample

Our sample consisted of 18 young adults (mean age = 25.79 = 3.28 years,
range 22-31 years, 10 women) and 27 older adults (mean age = 66.46 +
8.25 years, range 56—85 years, 14 women). Most participants were right
handed (three in each group were left handed), and all were screened
using a detailed health questionnaire to exclude health problems and/or
medications that might affect cognitive function and brain activity, in-
cluding strokes and cardiovascular disease. Structural MRIs also were
inspected to rule out severe white matter (WM) changes or other abnor-
malities. There was no relation between age and performance on the
mini-mental state examination (Folstein et al., 1975). The present exper-
iment was approved by the Research Ethics Board at Baycrest, and all
participants gave informed consent for their participation (following the
guidelines of the Research Ethics Board at Baycrest and the University of
Toronto) and were paid for their participation.

Cognitive tasks

All brain analyses were performed using volumes acquired during task
blocks from a block design study (each task block was preceded and
succeeded by a 20-s-long fixation block) (Grady et al., 2010). Visual
stimuli were bandpass filtered white noise patches with different center
frequencies. For the purposes of the present study, we analyzed within-
person reaction time means and variability scores across three cognitive
tasks: (1) perceptual matching (PMT); (2) attentional cueing (ATT); and
(3) delayed match-to-sample (DMS). For PMT a sample stimulus ap-
peared centrally in the upper portion of the screen along with three
choice stimuli located in the lower part of the screen (for 4000 ms). The
task was to indicate which of the three choice stimuli matched the sam-
ple. Six such trials occurred in each PMT block (eight blocks total = 48
trials). For ATT, a stimulus appeared for 1500 ms in the center of the
upper part of the screen. Then an arrow pointing either to the right or to
the left appeared (in the lower part of the screen) with the sample stim-
ulus for 1500 ms. The arrow was removed and 500 ms later, two stimuli
appeared in the right and left locations for 3000 ms. The task was to
attend only to the location that had been cued by the arrow, and press one
of two buttons to indicate whether or not the cued target stimulus
matched the sample. There were four trials in each ATT block (8 blocks
total = 32 trials). Finally, in the DMS task, a sample stimulus was pre-
sented for 1500 ms in the center of the upper portion of the screen
followed by a delay of 2500 ms (blank screen). Then, three choice stimuli
were presented for 3000 ms in the lower portion of the screen and the
participants had to press one of three buttons to indicate which of the
three stimuli matched the previously seen sample. There were four trials
in each DMS block (8 block total = 32 trials). In all tasks, the intertrial
interval was 2000 ms (see Notes).

Before scanning, participants were tested in a mock scanner to deter-
mine within-subject accuracy thresholds for each task. These thresholds
indicated the difference in center frequency between stimuli necessary
for accuracy in each task to be ~80% during the scanning session. This
criterion helped equate task difficulty across participants before per-
forming tasks in the scanner.

MRI scanning and preprocessing

We acquired images with a Siemens Trio 3T magnet. We first obtained a
T1 weighted anatomical volume using spoiled gradient-recalled acquisi-
tion in a steady state [echo time (TE) = 2.6 ms, retention time (TR) =
2000 ms, field of view (FOV) = 256 mm, slice thickness = 1 mm) for
coregistration with the functional images and to ensure that there were
no significant brain abnormalities in any participants. T2* functional
images (TE = 30 ms, TR = 2000 ms, flip angle = 70°, FOV = 200 mm)
were obtained using echoplanar imaging acquisition. Each functional
sequence consisted of 28 5-mm-thick axial slices, positioned to image the
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whole brain. A total of 144 volumes were collected for PMT and DMS,
and 136 volumes for ATT. Images were registered to a nonlinear group
average anatomical image (Kovacevi¢ et al.,, 2005; Chen et al., 2006;
Levine etal., 2008) intended to serve as an unbiased anatomical template.
We have used this template in previous studies of both young and older
adults (for complete details on template construction, see Garrett et al.,
2010a). Functional data were slice-time corrected using AFNI (http://
afni.nimh.nih.gov/afni) and motion corrected using AIR (http://bishopw.
loni.ucla.edu/AIR5/) by registering all functional volumes to the 100th vol-
ume within run. By averaging all functional volumes within a motion-
corrected run, we calculated mean functional volumes. For each run, mean
functional volume was registered with each subject’s structural volume using
arigid body transformation model. After appropriate transform concatena-
tions, from initial volume to the 100th volume within run, from mean run
volume to structural volume, and from structural volume into our template
space, we obtained a direct nonlinear transform from each initial fMRI vol-
ume into template space. We then applied the FMRIB Software Library
(FSL)/ENIRT (FSL Non-linear Image Registration Tool) registration algo-
rithm to find a nonlinear transform between our template and Montreal
Neurological Institute (MNI) 152_T1 provided with FSL software (www.
fmrib.ox.ac.uk/fsl). Data were smoothed using an 8 mm Gaussian kernel.

We performed several additional preprocessing steps intended to re-
duce data artifacts. We corrected functional volumes in the Common
Template space via Independent Component Analysis within separate
runs, as implemented in FSL/MELODIC (Multivariate Exploratory Lin-
ear Optimized Decomposition into Independent Components) (Beck-
mann and Smith, 2004). We further adjusted voxel time series by
regressing out motion correction parameters, and WM and CSF time
series. For WM and CSF regression, we extracted time series from un-
smoothed data within small regions of interest (ROIs) in the corpus
callosum and ventricles of the Common Template. ROIs were selected
such that they were deep within each structure of interest (corpus callo-
sum and ventricles) to avoid signal contamination from external tissues
due to misregistration. Our rationale for using small ROIs and un-
smoothed data was to ensure that the ROIs would not contain signal of
interest (i.e., gray matter signal) for any subject. The choice of a one 4
mm? voxel within the corpus callosum for WM and a same size voxel
within one lateral ventricle for CSF was based on our experience of hav-
ing excellent registration for these structures across ages. With a large age
span in our data, it would be easy to introduce age-related bias if larger
ROIs or smoothed data were used. Spatial smoothing mixes signals from
neighboring voxels on one hand, and registration errors during spatial
normalization on the other; both factors can contaminate WM and CSF
time series due to the close proximity of gray matter voxels. And, al-
though we used nonlinear registration to adjust for age-related differ-
ences in anatomy (i.e., atrophy), differences likely remained such that, e.g.,
larger CSF ROIs would have residual small, yet biased, age-dependent con-
tributions from GM signal. These potential issues justified our use of only
small ROIs and unsmoothed data during WM and CSF regression.

To localize regions from our functional output, we submitted MNI
coordinates to the Anatomy Toolbox in SPM8, which applies probabilis-
tic algorithms to determine the cytoarchitectonic labeling of MNI coor-
dinates (Eickhoff et al., 2005, 2007). Regions not labeled using this
method were located manually using the Atlas of the Human Brain (Mai
et al., 2008) after transforming MNI coordinates to Talairach space with
the Nonlinear Yale MNI to Talairach Conversion Algorithm (Lacadie et
al., 2008) and associated online Java-based applet.

Data analyses

Behavioral measures. To prepare the data for examining each of our cog-
nitive tasks, we adopted an approach used in several previous studies
(Hultsch et al., 2000, 2008; MacDonald et al., 2006b; Dixon et al., 2007).
We set a lower bound (150 ms) for legitimate responses for each task on
the basis of minimal RT's suggested by prior research (MacDonald et al.,
2006b; Dixon et al., 2007). We then trimmed extreme outliers relative to
the rest of the sample on each task (=4000 ms). We established final
upper bounds for each task by dropping all trials >3 SDs from within-
person means. The number of trials dropped across all participants and
tasks was negligible (179/5040 total trials). For each task, we then im-
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puted missing values for outlier trials by using regression imputation (as
implemented in SPSS 18.0).

Using these imputed values, we calculated mean RTs and intraindi-
vidual SDs of RT's (hereto referred to as meany and ISDy,, respectively)
for each participant on each task according to previous recommenda-
tions (see below) (Hultsch et al., 2000, 2008; MacDonald et al., 2006b;
Dixon et al., 2007). Computing ISDyr, on raw RTs can be problematic
for many cognitive measures. Significant relations between various vari-
ables (e.g., age and possible practice effects) and meany, are typically
observed, and meany, are often positively correlated with raw SD val-
ues. Thus, for example, age differences in response variability could sim-
ply be due to preexisting differences in meany (Hale et al., 1988), thus
revealing little about the true state of variability. To disentangle these
potential confounds from legitimate response variability, we used regres-
sion to residualize the effects of age, block, trial and all their interactions
from all RT trials separately for each task. Further, in light of a recent
suggestion to evaluate the linearity assumption used in the residualiza-
tion of RT data when calculating intraindividual variability (Schmiedek
et al., 2009), we also examined the possible presence of nonlinearities
between RT trials and age, block, and trial number. We found none when
examining up to a quartic trend. Further, our subsequent linear-only
model runs revealed no effects of block, trial, or any related interactions
on RTs. However, a significant effect of age was noted for each task, thus
justifying the residualization of age from the data (PMT, R* = 0.30, p <
0.0001; ATT, R? = 0.16, p < 0.0001; DMS, R* = 0.15, p < 0.0001). We
then computed standardized RT residuals from this age-only model,
followed by within-person ISD, on these residuals. As evidence for the
lack of effects of block and trial, we found that correlations between
residuals from our first linear model (including age, block, trial, and all
interactions) and our second linear model (age only) were statistically
redundant (all r values >0.99 for all tasks).

Calculation of BOLD signal mean and SD. To calculate mean signal
(meany, ;) for each experimental condition, we first expressed each
signal value as a percentage change from its respective block onset value,
and then calculated a mean percentage change within each block and
averaged across all blocks for a given condition. To calculate BOLD SDs
(SDgo1p)> we first normalized all condition blocks such that the overall
4D mean across brain and block was 100 to correct for possible low-
frequency artifacts for each condition. For each voxel, we then subtracted
the block mean and concatenated across all blocks for each condition (for
further details, see Garrett et al., 2010a). Finally, we calculated voxel SDs
across this concatenated mean-block corrected time series. Our previous
work demonstrated that our preprocessing pipeline and brain variability
calculations reduced the average voxel SD by 50% across the brain, yet
the predictivity of SDyo; , more than doubled in magnitude (Garrett et
al., 2010a). This suggests that the further removal of possible “junk noise”
sources hones, rather than reduces the impact of, the SDy; , signal.

Other recent work on temporal brain variability (Samanez-Larkin et
al,, 2010) used an alternative measure of variability [the mean squared
successive difference (MSSD)] (von Neumann et al., 1941) intended to
prevent mean shifts in the data from overestimating true dispersion in
the data. Others (Mohr and Nagel, 2010) have commented that our use of
the SDy(; jp in neuroimaging (Garrett et al., 2010a) may be questionable
when task data are examined because we have not controlled for mean
shifts that could potentially overestimate true signal variability. On the
contrary (Garrett et al., 2010b), our measure of SDyq; , is remarkably
similar to the MSSD because we remove block means before SDy;
computation; the MSSD is intended to detrend the data, and this is
exactly what is achieved when block normalizing before SDy, , calcu-
lation (see Garrett et al., 2010a, their Fig. 2). In the present study, we
calculated the correlation between our SDyq, , measure (calculated as
noted above) and the MSSD (without block normalization) at fixation
only and across the entire time series of fixation and task blocks. We
computed this within and across subjects, and within and across runs.
Unsurprisingly, in all cases, our SDy; , measure and the MSSD were
statistically redundant (all r values >0.97).

Partial least squares analysis of relations between brain and age/behavior.
For each of the two brain measures (SDyq; p and meang; ), we per-
formed separate partial least squares (PLS) analyses (behavioral PLS)

Garrett et al. @ The Importance of Being Variable

(Mclntosh et al., 1996), which allow the identification of multivariate
patterns of relations between brain and age/behavior relations. This type
of analysis begins with the correlation matrix between our three variables
of interest (age, meany, and ISD1) and each voxel’s signal on each task;
correlations are calculated across subjects. The correlation matrix is de-
composed using singular value decomposition to produce latent vari-
ables, consisting of the correlation strength on one hand (i.e., the singular
value), and so-called “brain saliences” on the other (i.e., a weighting
pattern across brain voxels that optimally expresses the correlation). In
the present study, because we examined age, meanyy, and ISDy for
PMT, ATT, and DMS, nine latent dimensions were possible for each PLS
analysis. We then calculated so-called “brain scores” (akin to component
scores in principal component analyses) by taking the dot product of the
brain saliences and a given subject’s brain measures. Thus, in a single
measure, a brain score indicates the degree to which a subject expresses
the multivariate spatial pattern captured by a given age- and behavior-
driven latent variable. Significance of detected relations between multi-
variate spatial patterns and age/behavior was assessed using 1000
permutation tests of the singular value associated with each latent vari-
able. A subsequent bootstrapping procedure revealed the robustness of
voxel saliences across 1000 bootstrapped resamples of our data. By divid-
ing each voxel’s bootstrap mean salience by its estimated SE, we obtained
so called “bootstrap ratios” as normalized estimates of robustness. We
thresholded bootstrap ratios at a value of 3.00, which approximates a
99% confidence interval.

Results

Separately for SDyq,; , and meangg, 1, analyses, we examined age,
meang,, and ISDgy, in the same model, given known positive
relations among these three measures in the aging literature
(Hultsch et al., 2008). In our data, these relations were robust and
positive, regardless of cognitive task (see Notes).

Relations between BOLD variability and age, meang,

and ISDg

First, we used behavioral multivariate PLS (McIntosh et al., 1996)
to calculate the presence and strength of age- and behavioral-
dependent multivariate spatial patterns of SDy 1, across all three
cognitive tasks. We found a very strong relation between age,
behavior, and brain variability within a single, significant latent
variable (singular value = 69.04, permuted p < 0.0001). Boot-
strapped estimated confidence intervals around correlations be-
tween age and performance and the multivariate spatial pattern
demonstrated similar effects across age, behavior, and tasks (Fig.
la). The pattern of voxels demonstrating this relation between
SDyo1p and age and behavior effects was widely distributed and is
shown in Figure 2a. The vast majority of regions (84% of all
robust voxels) exhibited greater variability with younger age,
faster meangr, and lower ISDy (e.g., occipital cortex, cingulate
cortex, angular gyrus, shown in blue). Several small clusters (16%
of all robust voxels) showed the opposite pattern, in which lesser
variability occurred with younger age, faster meany, and lower
ISDg, (e.g., cerebellum, right anterior prefrontal cortex, shown
in yellow/red) (see Notes).

Relations between meang, , and age, meany,, and ISDg

Our meangy,, PLS analysis also revealed a single, significant
latent variable (singular value = 53.37, permuted p < 0.0001).
Like for SDgyop, bootstrapped confidence intervals demon-
strated similar effects across age, behavior, and tasks; however,
the magnitudes of these correlations were somewhat lower (Fig.
1b). The resulting multivariate spatial pattern (Fig. 2b) indicated
that less mean activity in a host of regions (e.g., occipital cortex,
middle frontal gyri, and left anterior cingulate; shown in yellow/
red) correlated with younger age, faster meangy,, and lower
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Figure 1. a, b, Correlations (Pearson r) between age, meang;, and ISDg; across tasks and
SDgovp (@) and meang, ; (b). Both model effects resulted from the first latent variable from
separate task PLS model runs (one for SDgg, , and one for meangy, ). Error bars represent
bootstrapped 95% confidence intervals. Although our sample did not consist of middle-aged
adults, analyzing age as either a continuous or dichotomous variable (young vs old) made little
difference in our PLS model runs. R2 values were within 1.4% across relations involving brain,
age, and performance, with no differences in permuted p-values. Thus, we elected to maintain
the use of age as a continuous measure, just as we did to evaluate initial bivariate relations (see
Notes).

ISDy s only one small cluster exhibited greater mean activity
(i.e., precentral gyrus; shown in blue) (see Notes).

How do meang; p, and SDg; p spatial patterns compare?
From Figure 2, a and b, it is obvious that our SDyq;, and
meangq, , spatial patterns have far more differences than simi-
larities. Convergent with our previous findings (Garrett et al.,
2010a), this suggests that the two brain measures (SD and mean)
revealed different topographical manifestations of the same age
and behavioral effects across tasks. Image overlay plots using only
robust bootstrapped voxels (Fig. 2¢,d) highlighted similarities
and differences between these spatial patterns. Notably, there
were few similarities between brain measures outside of occipital
cortex, and even within this region, the majority of overlapping
voxels have opposite directionality (Fig. 2d, shown in red). Thus,
younger age, and faster and more consistent RTs were associated
with greater brain variability, but less mean activity in these few
overlapping regions.

To quantify the degree of spatial overlap on a whole-brain
level, we correlated meang; , and SDyo;p, PLS parameter esti-
mates across all voxels (not just those voxels that surpass a boot-
strap threshold of 3.00 or more). We subsequently computed a
bootstrapped 95% confidence interval around this correlation.
Similar to our previous work (Garrett et al., 2010a), there was no
evidence for global spatial overlap (r = —0.02; bootstrap confi-
dence interval = —0.29, 0.23). Because we computed a correla-
tion across all voxels that may show either positive, negative, or
no correlation across brain measures (which could effectively
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cancel each other out if there is no clear directional pattern across
voxels), it is possible that some degree of spatial overlap, as seen in
Figure 2d, will not guarantee correlation across the brain. In our
data, this was exactly the case. For example, negative correlations
between SDgyn p and meangy, measures in occipital cortex
were counteracted by SDy p clusters in the cerebellum that were
completely absent for meang,; . We intend this global measure
to indicate whether one could expect to know something about
brain variance by knowing something about mean brain activity;
in our data, the answer is largely no. Even when we calculated
correlations between SDyq, [, and meang, , values across only
robust voxels, the correlation remained low (r = —0.24). As work
on brain variability continues, specific types of spatial overlap
between meany, , and SDy, |, maps may be expected; at pres-
ent however, we find little evidence for meaningful overlap.

Direction and magnitudes of brain variability by age

and performance

Our SDyo1p analyses revealed a relative pattern in which more
brain variability largely corresponded to younger age and better
performance (Fig. 2a, blue regions), whereas only a few areas
showed a correspondence between more brain variability, older
age and poorer performance (Fig. 2a, yellow/red regions; referred
to here as yellow regions). In light of these results, we then asked,
precisely how different are levels of variability across regions
(blue and yellow), both within and across age and performance
levels (i.e., in terms of actual, rather than relative, average SDy
differences)? There are two possible patterns of brain variability
levels that could produce the age- and performance-based effects
we found in the current study: (1) younger, better-performing
adults exhibit a similar brain variability level across both blue and
yellow regions (lesser variability-based regional brain differenti-
ation) in Figure 24, while older, poorer-performing adults exhibit
lower brain variability in blue than in yellow regions (greater
regional differentiation), or; (2) younger, better performers pres-
ent with higher brain variability levels in blue regions than in
yellow (greater regional differentiation), and older adults exhibit
similar levels of brain variability across blue and yellow regions
(lesser regional differentiation). To examine this, we first took all
robust voxels from our SDgq; , analysis (those that surpassed a
BSR threshold of * 3.00) and separated them into those from
blue regions and those from yellow regions. We then calculated
the across-task average within-person SD for all blue voxels and
all yellow voxels, separately. We calculated within-person voxel
SDs across tasks because of the remarkable similarity of our PLS
results across tasks (Fig. 1a, see the overlap in confidence inter-
vals). Finally, using mixed modeling, we compared a group of
young, faster, and more behaviorally consistent participants
(22-31 years of age, >1.00 SD below the sample Meang across
tasks and the sample ISDy across tasks; n = 13) to older, slower,
less consistent participants (56—85 years, >1.00 SD above the
sample Meang across tasks and ISDy across tasks; n = 20) on
blue and yellow SDyo,p. We found that younger, faster, and
more consistent participants had 78% more brain variability in
blue regions than they had in yellow regions, whereas older,
slower, and more inconsistent participants had essentially the
same level of brain variability across blue and yellow regions
(group X region interaction, F, ;) = 165.44, p < 0.0001, partial
m* = 0.84; Fig. 3). Further, younger and better-performing par-
ticipants had 37% more brain variability in blue regions, and 27%
less brain variability in yellow regions compared with the older,
poorer-performing group. These results suggest that older and
poorer-performing adults have a vastly reduced range of brain
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c Differences between
SDgorp and meangg,

Figure 2.

d Similarities between
SDgorp and meangg,

PLS brain patterns and overlay plots. a, Blue regions indicate greater and yellow/red regions indicate lesser brain variability with younger age, and faster and more consistent RT

performance. b, Blue regions indicate greater and yellow/red regions indicate lesser mean brain activity with younger age, and faster and more consistent RT performance. In both @and b, all robust
areas surpassed a thresholded bootstrap ratio (salience/SE) of = 3.00 (for yellow/red regions) or = —3.00 (for blue regions). Darker colors indicate greater robustness. ¢, Overlay plot highlighting
differences between SDy, , and meang, , spatial patterns. Red, Greater SDg, , with younger age and better performance, but no meang  effect; yellow, lesser SDyq, , with younger age and better
performance, but no meang,, , effect; cyan, greater meany, , with younger age and better performance, but no SDg, ;, effect; blue, lesser meang, , with younger age and better performance, but
no SDgq,  effect. d, Overlay plot highlighting overlap between SDg,, , and meang, , spatial patterns. Red, Greater SDg, , and lesser meang, , with younger age and better performance. Allimages

represent every other slice in z-direction.

variability across robust voxels (and thus, reduced variability-
based regional differentiation) compared to younger and better-
performing adults.

Discussion

Our results confirmed that greater brain variability across a broad
set of regions was strongly associated with younger age, faster
response times, and less variable RTs (a small number of voxel
clusters exhibited the opposite effect). For meang, , a signifi-
cant age and performance effect also was found, although spatial
patterns were essentially orthogonal across brain measures, and
any regions that did overlap were largely opposite in directional-
ity of effect. Our work continues to support the idea that assessing

BOLD variability reveals a highly distinct and powerful brain
pattern not captured by mean signal, either at fixation (Garrett et
al., 2010a) or on task.

A more variable brain is a more effective brain

The directionality of our SDyqp, effect suggests that overall,
greater brain variability is functional, and our results converge
with previous work. McIntosh et al. (2008) found that greater
EEG signal variability correlated with more consistent reaction
times and more accurate performance, and may index a more
sophisticated neural system that can explore multiple functional
states. We have argued that, as a nonlinear dynamical system, the
brain functions at the “edge of criticality” between any number of
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Figure 3.  Levels of brain variability in robust blue and yellow regions from our SDgq, , PLS
analysis. Blue and yellow regions refer to those in Figure 2a (we label yellow/red in Fig. 2a as
yellow here). Fast and slow refer to =1 and =1 SD from the sample meany; across tasks;
consistentand inconsistent referto < Tand =15D from the sample average ISD across tasks.
Blue areas represent 84% and yellow areas represent 16% of robust brain voxels identified in
the PLS SDgq,, analysis. Thus, the group difference noted here for blue regions is much more
prominent in brain than is the difference noted for yellow regions. Unsurprisingly, a separate
analysis of overall brain variability (i.e., SDgq, , of all robust voxels, regardless of whether blue or
yellow) also revealed a strong group difference, ; 5;) = 21.77, p < 0.0001, partial n’=
0.41; younger, faster, more consistent adults exhibited 25% more brain variability than older,
slower, more inconsistent adults across tasks.

possible states or functional network configurations (McIntosh
etal., 2010; Deco et al., 2011). When variability is too low, there is
little capacity for the system to explore these states, yielding the
potential for the system to remain in a single state. With relatively
greater variability, and upon fluctuations in variability, the brain
is more capable of transitioning from one state to another. Sto-
chastic resonance research suggests that there is an optimal level
of noise that facilitates neural detection of weak incoming signals,
and too little or too much noise results in less efficient informa-
tion processing (Li et al., 2006; McDonnell and Abbott, 2009).
Relatedly, balanced neural excitation and inhibition (that in-
nately yields a given amount of variability) also aids the brain in
responding to the greatest range of stimuli (i.e., maximal dy-
namic range); during hypoexcitable (less variable) and hyperex-
citable (too variable) states, dynamic range, and thus neural
efficiency, suffer (Shew et al., 2009). In our study, because partic-
ipants with greater brain variability were younger and more effi-
cient processors of information, these participants’ variability
patterns may represent an “optimal” state characterized by a
greater ability to transition between brain states and by increased
dynamic range. Conversely, it would appear that older, slower,
more behaviorally inconsistent participants lack a critical
amount of brain variability (at least in the blue areas noted in Fig.
2a) for optimal neural function.

Some investigators (Ma et al., 2006; Beck et al., 2008) have
argued that variability is essential for the nervous system to op-
erate in an optimal, probabilistic, Bayesian manner; that is, neu-
ral variability yields adaptability across levels of stimulus
uncertainty in one’s environment by integrating available infor-
mation and subsequently computing probabilities for the most
efficient response. Optimal, probabilistic neural function may
require relatively greater task-driven brain variability to improve
one’s ability to learn and to handle ongoing external environ-
mental demands. For example, recent work with monkeys sug-
gests that single-cell variability increases during visuomotor
learning, thus facilitating the exploration of possible motor states
and better adaptation to new environments (Mandelblat-Cerf et
al., 2009). In our study, if younger, faster, more consistent par-
ticipants represent an optimally functioning group, then greater
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brain variability may serve as a proxy measure of their probabi-
listic, Bayesian-based neural system in action. Further, if it is true
that variability provides the kinetic energy for networks to ex-
plore possible functional architectures (McIntosh et al., 2010;
Decoetal.,2011), then by being in a constant state of exploration,
it is plausible that the brain continually generates predictions
about the most optimal network configuration for a given input.

However, it is certainly not always the case that relatively
greater brain variability is functional. Although the number of
regions that exhibited lower variability in younger, faster, and
more behaviorally consistent participants were far fewer in num-
ber (accounting for only 16% of robust voxels), they are notewor-
thy. Interestingly these regions predominated in the cerebellum
and subcortical structures (e.g., right caudate nucleus, right hip-
pocampus), both here and in our previous study examining age
differences in brain variability during fixation (Garrett et al.,
2010a). Similarly, using a financial decision task, a recent study
(Samanez-Larkin et al., 2010) also noted greater age-related sig-
nal variability primarily in a number of subcortical regions (e.g.,
right caudate nucleus, right thalamus). The authors also found
that higher variability in the nucleus accumbens (NAcc) correlated
with riskier financial decisions, and that this NAcc—performance re-
lation mediated the effect between age and performance. Surpris-
ingly though, the authors found no regions that exhibited greater
variability with younger age or better performance, whereas our
largest pockets of SDyn;p activation were strongly associated
with younger age and better performance (e.g., occipital cortex,
much of the cingulate cortex). Although our respective studies
suggest some convergence at the subcortical level, future research
should address differences between subcortical and cortical brain
variability effects, directionality of effects, and task types used.

With regard to actual levels of brain variability, our results
indicated that younger, better-performing brains had 78% more
variability in blue regions than they did in yellow regions,
whereas older, poorer-performing brains maintained the same
level of variability across regions. This suggests the presence of
dramatic between-subject differences in across-region differenti-
ation in SDyo; p. Thus, although we found that overall, a more
variable brain is an effective brain, the brain’s ability to maintain
greater signal stability in certain regions (in our case, in yellow
regions in Fig. 2a) is also a critical marker of both younger age and
better task performance. Importantly, the lack of brain variability
differences across regions in the older and poorer-performing
group may offer novel evidence for brain dedifferentiation with
age. Dedifferentiation theory (Baltes and Lindenberger, 1997;
Park and Reuter-Lorenz, 2009; Park et al., 2010) suggests that older
brains may become less functionally distinct during task perfor-
mance (i.e., through reductions in the selectivity and specificity of
neural processes). Our results indicate age-based dedifferentiation of
signal variability across a variety of regions, thus representing an
alternative and informative view of cortical selectivity.

A notable inversion between behavioral and brain variability,
and relations with age

Over the last several years, interest in behavioral variability has
heightened, particularly with regard to response variability in
reaction time studies. Response variability typifies older adults, as
well as a host of other age- and non-age-related conditions
(Hultsch et al., 2008; MacDonald et al., 2009). This variability
may index reductions in nervous system integrity, and could re-
sult from various sources of neural inefficiency that impede con-
sistent information transmission within the nervous system
(MacDonald et al., 2009). Notably, we found that more consis-
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tent response patterns (as well as younger age and faster RT),
correlated with greater brain variability; it thus appears that alack
of BOLD variability in many regions could serve as a novel index
of inefficient processing in this context. There are several reasons
the directionality of this effect could exist. For example, some
forms of brain variability appear to be a direct function of coher-
ence and connectivity between brain regions (Fox et al., 2006; Nir
etal., 2008). Along with increased response variability (MacDon-
ald et al., 2006a, 2009), older adults also consistently exhibit re-
duced or altered brain connectivity at both structural (Sullivan
and Pfefferbaum, 2006) and functional levels (Andrews-Hanna
etal., 2007; Grady et al., 2010), possibly then, resulting in reduced
brain variability. If greater brain variability indeed indicates a
more sophisticated, complex neural system (Mclntosh et al.,
2008), then given age-related reductions in connectivity, it is un-
surprising that older, more inconsistently performing adults
would show lower brain variability than younger, more consis-
tently performing adults. Interestingly, evidence exists for a
U-shaped curve representing the development of behavioral vari-
ability (i.e., that young children show the greatest variability,
young adults the least variability, and older adults increase in
variability into late life) (Williams et al., 2005). Combined with
McIntosh et al.’s (2008) results that young adults have more vari-
able brains and less variable RT performance than younger chil-
dren, our current results may provide evidence for an inverted
form of this developmental U-shaped curve with regard to brain
variability (in which older adults have less variability than young
adults). Future research on BOLD variability across the lifespan
would clarify this curve’s existence and form.

Complementarities and other future directions

The present results provide unique and potentially complemen-
tary results to a bourgeoning field of brain variability research
(McIntosh et al., 2010). Intriguingly, recent alternative ap-
proaches applied to young adults (Xue et al., 2010) demonstrate
that spatial variability (i.e., spatial pattern dissimilarity across
stimuli repetitions, in which spatial patterns are determined us-
ing mean BOLD values at each voxel) is associated with poorer
memory performance. Future research could thus examine the
hypothesis that temporal and spatial pattern variability may be
inversely associated. Further, the present work complements
existing research demonstrating links between heightened be-
havioral variability and degraded structural, functional, neu-
romodulatory, and genetic sources (Li et al., 2001; MacDonald et
al., 2009). The future study of plausible positive relations between
the integrity of such sources and temporal BOLD variability
would help greatly to establish the underlying substrate necessary
for temporal brain variability to occur. Also, given the sensitivity
of brain variability for detecting age (Garrett et al., 2010a) and
performance, the potential for brain variability to provide a use-
ful marker in other age (e.g., dementia, mild cognitive impair-
ment, stroke)- and non-age-related contexts (e.g., traumatic
brain injury; schizophrenia) may be great.

Conclusion

In line with our previous findings (Garrett et al., 2010a), our
SDyorp pattern in the current study was statistically robust and
spatially differentiated from mean activation. Overall, younger,
faster, and more consistent participants exhibited higher brain
variability across tasks, providing evidence that BOLD variability
indeed plays an important functional role. Younger, better per-
formers also exhibited greater regional SDy, ,-based differenti-
ation compared with older, poorer-performing adults. We
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suggest researchers continue to compare and contrast BOLD
variability and BOLD mean in future research. In the ongoing
study of relations between the brain and important phenomena
of interest (behavior, cognition, development, disease), it is prob-
able that the true state of those relations are underappreciated by
using meang, , measures exclusively.

Notes

Supplemental material is posted at http://douglasdgarrett.com/
publications and includes Figure S1 (visual depiction of tasks), Table S1
(r matrix of age and performance relations), and Tables S2 and S3 (peaks,
MNI coordinates, bootstrap ratios, and cluster sizes for SDyq;, and
meang, , results, respectively). This material has not been peer reviewed.
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